
Deploy Secure
and Safe Web
Appl icat ions

Part of the PHP on IBM i series

Deploy Secure and Safe Web Applications

The purpose of this white paper is to explain how WebSmart, in conjunction with the free IBM i HTTP
Server powered by Apache, provides all the tools and technology for you to create and deploy web
applications that are totally secure and safe. These applications can be browser-based or SOA.

By kind permission of BCD Software

For information about PHP on i, visit www.proximity.co.uk/ resources/php-on-i

There are six major areas of concern with regards to security:

- Client (browser)
- Network connection (internet, intranet, extranet)
- Firewall
- HTTP Server
- WebSmart applications running on the IBM i (server)
- SOA applications - requiring communications between an

IBM i server and any other server using the HTTP or
HTTPS protocols.

We refer to each of these areas of concern in the following
sections, and the security issues specific to each one.

Areas of concern

This guide will address the following security issues:

- Saving information on a client - using cookies
- Preventing XSS (cross-site scripting) and SQL injection

attacks
- Sending secure information back and forth from client to

server using encryption
- Saving secure information on the server using encryption
- Prohibiting unauthorised access to the web server
- Prohibiting unauthorised access to OS/400 objects

(programs, files, data areas, libraries, etc.)
- Preventing DOS (denial of service) or DDOS (distributed

denial of service) attacks such as ping floods or HTTP
request floods

- In SOA applications, sending secure information back and
forth between servers (web services).

Security issues

We will explain the network, HTTP, IBM i system architecture
and WebSmart programming features that make it possible to
effectively address all these issues.

In this discussion, the term 'client' refers to a browser, running
on any platform such as Windows, Macintosh or Linux. Most
browsers and PC's have the capability to store persistent data
on the PC, in the form of 'cookies'. A cookie is a small file
containing information related to a specific site. Browser
security (for all browsers) is designed so that a cookie created
on one site cannot be accessed, modified or recreated by
another site (so as to prevent the ability to hijack someone's
cookie from another site.)

WebSmart has functions that fully support the use of cookies.
While most browsers provide the ability for users to prevent
cookies from being created or stored, you should understand
that most commercial sites depend upon cookies in order to
function correctly. Cookies often contain human-readable data,
though, so when you decide to store information in them, that
information should be of a non-sensitive nature. This will
prevent other users of a client machine from having access to
any sensitive information.

WebSmart provides functions for creating and managing
sessions, called 'Smurfs' in WebSmart ILE and sessions in
WebSmart PHP. You can use these functions to store a session
ID in a cookie. This is simply a string of characters- 32
unencrypted, 64 encrypted. A smurf or session variable can be
used to store sensitive information associated with it on the
server instead of the client. We discuss this notion in more
detail in a later section titled Saving secure information on
the server using encryption.

Saving information on a Client: using cookies

http://www.bcdsoftware.com/iseries400solutions/websmart/

For information about PHP on i, visit www.proximity.co.uk/ resources/php-on-i

Cross-site scripting is a security vulnerability that can enable
an attacker to inject a client-side script into your web
application. This type of attack may be used to bypass security
mechanisms and validation normally imposed on web content
to gain access to session cookies and other information kept
on the client side or browser. In essence, XSS is a special case
of code injection. The first line of defence against these type
of attacks is contextual output encoding or escaping. There
are various escaping schemes that can be used, including
HTML entity encoding, JavaScript and CSS escaping and URL
encoding. WebSmart PHP templates generate a function that
will "sanitize" the output as part of these prevention steps.
Besides content filtering, the use of additional security
controls when working with cookie based authentication is
recommended.

SQL injection attacks are another type of code injection
techniques. SQL injection is a security vulnerability in which
an attacker will input SQL statements in a web form to try and
change database table contents. This could lead to an attacker
gaining access to sensitive information stored in your files.
The vulnerability happens when user input is either
incorrectly filtered for string literal escape characters
embedded in SQL statements or user input is not strongly
typed and unexpectedly executed.

The article Common Security Mistakes in Web Applications
hosted by Smashing Magazine; is an excellent starting point
to gain a better understanding of these topics and other
security concerns. This article contains straightforward
examples and a solid explanation of each concept. Even
though the article refers to PHP coding techniques, the same
concepts apply for web applications developed with other
programming languages or tools, including WebSmart ILE.

Preventing XSS (cross-site scripting) and
SQL injection attacks

While data can be secured readily by using encryption and
conventional AS/400 object security, there will often be
applications where you need to secure data as it is being
transmitted across the Internet. For example, any time a credit
card number is required to purchase a product, that number
should be transmitted securely. This is where SSL (secure
sockets layer) technology comes into play.

SSL is a protocol and mechanism that ensures that data is
encrypted at the source, transmitted in encrypted form, and
then decrypted at the target. The server or browser can play
the role of source or target, depending on the nature of the

Sending secure information between Client
and Server

transaction. For example, sending a credit card number for a
purchase involves the browser as the initiator of a message
sent to the server. The encryption technology used involves
private / public key encryption. The server must have a digital
certificate installed. This is essentially the 'public' part of the
key. While the mechanics of private / public key encryption are
beyond the scope of this guide, it is sufficient to know that all
web servers (IBM i or not) that implement SSL require a digital
certificate.

The IBM i has, as part of OS/400, facilities for creating your
own digital certificates. However, we recommend that you
purchase a digital certificate from a trusted CA (certificate
authority) such as Verisign or Thawte, so that anyone who
accesses the secure part of your site will know that the
certificate has been authenticated by a reliable third party, as
opposed to one you have simply generated yourself. Bear in
mind that implementing SSL on the IBM i is a process
completely independent of using WebSmart. Any static pages,
CGI programs, or Java servlets can use the SSL infrastructure
on your server once it has been configured and activated.

To specify the use of a secure channel, with SSL in effect, you
can use https:// in your URL (as opposed to simple 'http:// ').
This informs the browser that the link is secured. For example,
a shopping cart program called CART that requires a credit
card number could be invoked by clicking on a link to a URL
such as the following (non-working example link only):

https://www.bigcompany.com/cart.pgm

Clicking on this link will result in communications between
browser and server utilizing SSL. All information sent back and
forth between them will be encrypted at the source,
transmitted in encrypted form, and then decrypted at the
target, thus preventing any bots from sniffing and reading
sensitive information.

For additional resources on implementing SSL, please refer to
the WebSmart Reference Guide, Chapter 10, Security. IBM also
has reference manuals and Redbooks on the subject. Search
for SSL in the IBM i information centre, accessible from
www.ibm.com.

http://coding.smashingmagazine.com/2010/10/18/common-security-mistakes-in-web-applications/
http://coding.smashingmagazine.com/2010/10/18/common-security-mistakes-in-web-applications/
http://coding.smashingmagazine.com/2010/10/18/common-security-mistakes-in-web-applications/
http://coding.smashingmagazine.com/2010/10/18/common-security-mistakes-in-web-applications/
http://coding.smashingmagazine.com/2010/10/18/common-security-mistakes-in-web-applications/
http://coding.smashingmagazine.com/2010/10/18/common-security-mistakes-in-web-applications/
http://www.ibm.com/

Once information has been transmitted securely, via SSL, you
need a way to store that information securely. While
conventional IBM i object-level security can be implemented
(discussed in a later section), you may need additional security.
Credit card numbers and passwords are examples of data that
is so sensitive it requires some additional security.

You can use the encryption routines provided with WebSmart
to store just those pieces of information that are especially
sensitive in encrypted form. For example, a customer master
file might contain a number of fields that do not need to be
private, such as name, address, city etc., while data elements
such as password and credit card need to be encrypted. You
can use the encrypt PML function to encrypt data and the
decrypt PML function to decrypt it. These functions use AES
encryption, which utilizes a seed encryption key. As an
additional security measure, you will probably want to secure
the encryption key from programmers (secure any source code
by deleting it or revoking authority to it) to ensure no
programmer can simply decrypt data by calling the decrypt
function using the correct key.

If you use this approach, even if a user or programmer can
view the contents of a file using some kind of IBM i utility
(DFU, SQL, DSPPFM etc.) or program, the sensitive data
elements will be unintelligible.

In an earlier section we discussed using session ids (smurf ids)
to associate a given user's browser session and interaction
with the server. Session ids provide a convenient
programming mechanism for maintaining state in a web
application. They also allow you to store sensitive information
associated with a session in smurfs, which are essentially
server-side cookies. A session variable is simply a piece of data
stored in a protected database file in WebSmart. It is
associated with its unique smurf (session) id. So, even if you
don't choose to store sensitive information such as credit card
numbers in your legacy application database, you can use a
smurf to store it instead- either for a very short time (such as
the life of the browser session), or as persistent data. You can
use the encryption functions to encrypt and decrypt data
stored in smurfs in the same manner as for conventional
database fields.

Saving secure information on the server
using encryption

Contrary to popular misconceptions, the IBM i Web Server is
actually considerably more secure, by default, than the library
system of the IBM i. In the library system, objects are implicitly
publicly available until you explicitly revoke authority, or
assign custom authority (use and management rights). Entire
libraries can be left unsecured, with the only line of defense
being the inaccessibility of a command-line interface. In
contrast to this, the HTTP original server, when running with
the default configuration, denies access to everything; so does
Apache. For example:

<Di r ect or y / >

Al l owOver r i de None

Opt i ons None

Or der deny, al l ow

Deny f r om al l

</ Di r ect or y>

This configuration code tells the Apache web server to deny
access to all directories. You can then modify the configuration
file so that subsequent directives selectively open up parts of
your server. For example:

Tel l Apache wher e t o f i nd pr ogr ams f r om
ur l / webt est / Scr i pt Al i asMat ch
^ / webt est / (. *) \ . pgm$
/ qsys. l i b/ webt est . l i b/ $1. pgm

Al l ow al l pr ogr ams i n t hi s di r ect or y t o
r un:

<Di r ect or y / qsys. l i b/ webt est . l i b>

Al l owOver r i de None

Opt i ons None

or der al l ow, deny

al l ow f r om al l

</ Di r ect or y>

These directives allow CGI programs in library webtest to run.
Note that you have to explicitly tell Apache which libraries are

available to run programs from.

Prohibiting unauthorised access to the web
server

For information about PHP on i, visit www.proximity.co.uk/ resources/php-on-i

In addition to opening access to very specific, limited areas of
the server, you can also cause the browser to issue challenges
for user authentication. This technique allows you to ensure
that only authorised users access those areas of the server
that have been opened up. You can base user authentication
on IBM i user ids, in which case all IBM i authority features are
invoked, including the '3 mistakes and you are disabled'
feature for repeat wrong password attempts. Or, you can use
validation lists. A validation list is an OS/400 object of type
*VLDL. It contains entries with both secure and unsecured
information (e.g. user ids and passwords).

When the browser challenges a user for their user id and
password, the HTTP server can validate that information
against a validation list entry. Another option for user
authentication is to use a database file, and authenticate with
a WebSmart program that validates the user and password
against records in that file. In this case, you probably want to
secure passwords by storing them in encrypted form in the file
(using the AES encryption functionality of WebSmart). Using
this approach requires that you write a WebSmart front-end
login program, and that all subsequent programs in the
application check to ensure that the user has successfully
logged in. You can do this with the session id functions of
WebSmart. For example, the login program can do the
following:

- Prompt for user id and password
- Validate against a database file (match the user id by key,

and match on decrypted password)
- When validated, create a session id (smurf id) and set a

smurf (server-side cookie) to store the user name, and any
custom authority settings.

Subsequent programs would do the following:

- Check for the presence of a valid session id
- Check for the presence of a smurf for that session id,

containing the appropriate value to indicate the user is
authorised to proceed

- If no session id or smurf is found, redirect to a 'not
authorised' page.

How to challenge requests for valid user
IDs and passwords

For information about PHP on i, visit www.proximity.co.uk/ resources/php-on-i

By using the HTTP server authentication method for
protecting access to various areas of your site, you can also
impose standard OS/400 object-level security. Normally, a
special user profile of QTMHHTP1 is used for jobs running in
the web server.

Prohibiting unauthorised access to OS/400
objects

Object rights will be determined by the authority to each
object available for QTMHHTP1. As an example of how to
impose object-level security, let's assume you have a common
library of files, used by both green-screen users and by some
web users.

If you want to ensure that only green-screen users with the
correct authority can access certain files in the application,
you can either explicitly grant data rights to files for those
users, or grant rights to *PUBLIC and explicitly revoke rights
for user QTMHHTP1. The web server protection directives also
let you specify any other user profiles to run under, in addition
to the default of QTMHHTP1. In the original HTTP server,
these are protect directives.

A protect directive in the HTTP server configuration can
specify to use the default user profile (QTMHHTP1), or the user
profile of the user who has signed on, just like in a traditional
5250 interactive job. In the following example, whenever a
user tries to access a page with /cgidev/ in the path portion of
the url, they will first see a challenge box, asking for a valid
user id and password. That request, and all subsequent
requests to that path from that client, will use the user profile
that is entered.

Pr ot ect i on Pr ot MySi t e

{

 Ser ver I D MySi t e

PasswdFi l e %%SYSTEM%%

ACLOver r i de Of f

mask Al l

User I D %%CLI ENT%%

}

 pr ot ect / cgi dev/ * Pr ot MySi t e

 exec / cgi dev/ * . pgm

 / qsys. l i b/ cgi devpgm. l i b/ * . pgm

 pass / cgi dev/ * / compweb/ dev/ *

So, for example, if the user attempts to go to this url:
www.bigcompany/cgidev/login.pgm the browser will
challenge them for a valid user id and password. Because
%%CLI ENT%% (instead of %%SERVER%%) is specified for the
UserID keyword in the protection directive, the web server will
handle the request using the user profile specified at the
client. So, if the user signs on as FRED, then all object rights,
etc. will be checked against FRED's user profile, not
QTMHHTP1.

Adopting user profiles other than
QTMHHTP1

You can also configure the Apache web server to accomplish
the same thing. Here's an equivalent example:

<Locat i on / cgi dev/ >

Requi r e val i d- user

Aut hType Basi c

Aut hName Pr ot MySi t e

PasswdFi l e %%SYSTEM%%

User I D %%CLI ENT%%

</ Locat i on>

You can also adopt a user profile directly in a WebSmart
program. WebSmart comes with a set of PML functions for
using IBM i user profiles. These functions provide all the
capabilities you have in interactive jobs - validating the user
profile, changing passwords (if you have authority to do so)
and causing a job to run under a given user profile. They are
implemented by using native OS/400 APIs that work with user
profile security at the operating system level.

These PML functions provide the additional flexibility to
control security at a program interface level, instead of at the
HTTP server level. For example, you could write a WebSmart
program that presents an initial login page, asking for IBM i
user profile and password. Once the user has successfully
entered a valid user profile and password, any subsequent
page requests will use this for security purposes. For example,
if user FRED logs on, and attempts to access the payroll file,
but does not have read data rights to the file, then IBM i
object-level authority will kick in and prevent FRED from
accessing the data. Object-level authority applies to any
OS/400 object type, such as data areas, user spaces, spool files
and programs, not just database files.

In summary, you can allow or deny access to OS/400 objects
using these mechanisms:

- HTTP Server configuration directives
- WebSmart user profile functions and coding techniques

that interface with native OS/400 APIs
- OS/400 object-level security

Both the Original HTTP Server and the IBM HTTP Server
Powered By Apache can be extended with user-written code
to allow you to impose additional security constraints on your
server. Normally, all URL requests are handled by the web
servers configuration directives, as discussed in a section
above titled Prohibiting unauthorised Access to the Web

Imposing additional security by extending
the web servers

Server. As a request comes in to the server, it is picked up by
the HTTP server, and matched against the configuration rules
to see if it qualifies for consideration for a specific action. If it
does, that action is taken. This might be to explicitly allow or
deny access to that file, or to explicitly running a program. For
example, in the Original HTTP server, an exec statement is
used to control which CGI programs can run, while a pass
statement determines what static files can be served. There
are other types of statement, such as service statements, that
allow you to specify a module of code to run for a URL. For
example:

ser vi ce/ nexus/ i nt r a/ * . pgm/ QSYS. LI B/ XL_SMSLI B

. LI B/ sc_ht t psr v. sr vpgm: xl _ser vi ce

Here, any requests such as:
ht t p: / / myser ver / nexus/ i nt r a/ nxmenu. pgm will be
intercepted by this statement, and passed to the service
program call sc_ht t psr v i n XL_SMSLI B. This service
program needs to be coded to conform to the requirements
for receiving URL requests within the HTTP server. For
example, in Nexus, our IBM i-centric Web Portal product, we
use this service program to further qualify program execution
requests. Using this approach, we can control which specific
Nexus users are authorized to view pages or run Nexus
components. This allows us to have a database-driven security
system that provides an extension to the existing security
constraints, much like a 5250 menu system can provide
additional security to standard OS/400 object authority.

In this case, the Nexus web server extensions check against a
links protection database that determines if users or groups of
Nexus users are permitted or denied access to programs or
static pages. Because this security measure takes place within
the web server, it is extremely secure- nothing has to be done
at the application programming level, or the operating system
object security level, because unauthorised requests will be
rejected by the HTTP server itself, prior to being conveyed to
operating system.

For information about PHP on i, visit www.proximity.co.uk/ resources/php-on-i

There are several advantages to running the database and the
web server on a different server and/or partition.

The most important advantage is the added security. This is
assuming that your database and web server are behind a
firewall and have only minimal links open to each other. If one
of the servers is compromised, the maximum damage the
other one will get is the link/API between the two servers.
Compare this to hosting the web server and database on the

Imposing additional security by running the
web servers separately

For information about PHP on i, visit www.proximity.co.uk/ resources/php-on-i

same box. If the web application is compromised, the hacker
could potentially access the server files. They would also have
access to the entire system, including the database.

Running the web server seperately also allows for better
scalability. For example, if you need more web server
performance, you can add another web server into the cluster.
In this case, there would be two web servers handling the
load, which would offload some of the web requests from the
existing web server onto the new one.

This example leads to another advantage - redundancy. If you
have two or more web servers running, you can potentially
take a web server offline to perform upgrades and let the
other web server handle the requests. This would allow you to
complete upgrades while your site is online. Once the upgrade
is done, you can easily put the upgraded server back to work.

This subject is really concerned with general network security
issues, rather than specific to WebSmart and the IBM i, but we
discuss it here because, regardless of what platform you
choose for your web server, you need to give consideration to
how you will prevent attempted attacks on your network from
adversely affecting your operations.

Ping, DOS or DDOS floods are attacks on your server where
your server is bombarded with incoming requests for
responses. DDOS attacks are more lethal than DOS attacks,
because many machines are involved in bombarding your
server. These kinds of attacks are executed by malicious
internet users. Some are sophisticated programmers, some are
'script-kiddies' - people with some technical knowledge who
know how to run a pre-programmed script. The premise
behind all these types of attacks is the same: flood your server
with so much traffic that it eventually locks up.

The best approach to use to mitigate the effects of these
attacks is to use a sacrificial lamb - a combination of
hardware/software that absorbs the hits as they occur, but
which does not allow any of the flooding traffic to go through
to the web server or other servers (mail, FTP, file servers, etc.)
inside your network. This is one of the roles of firewalls and
routers. So, in general, it is a good idea to have a firewall in
place at the conjunction of the internet to your internal
network. The firewall may end up going down, but it will
prevent any other part of your network from being affected.
Although it is beyond the scope of this document to cover
them in detail, there are many commercial solutions available
to cope with these sorts of attacks. Some companies address
this by having an IBM i in their DMZ exclusively dedicated to
web serving, which accesses data on their actual production
IBM i. In every case it is recommended that a firewall be used
as well.

Ping floods, DOS or DDOS floods

Smaller scale DOS attacks can be mitigated by controlling the
number of threads (jobs) that the web server will spawn under
heave loads, and to limit the priority of the web serving jobs.
There are also a variety of configuration options within the
Apache configuration which relate to detecting and handling
DOS attacks.

SOA (Service Oriented Architecture) applications usually
involve web services - the transmission of information directly
between servers over the HTTP transport protocol. An
example of an SOA application is credit card validation and
approval. In this case, a server sends credit card information
along with a potential sales transaction to a web server, in the
form of an HTTP request. The initiator of the request is
referred to as a web service 'consumer' while the web server
that responds and provides the validation data is a web
service 'provider'.

In order for such a transaction to be secure, the data must be
encrypted at either end of the connection and transported
back and forth in encrypted form. This is done by using the
HTTPS (HTTP secure) protocol. WebSmart fully supports
acting as both a web services consumer provider and
consumer using HTTPS. So, in the above example, you can
write a WebSmart application that makes a request to a credit
card approval web server - your application acts as the
consumer - and send that request totally encrypted. In
addition, the response can be received across an encrypted
channel, ensuring no-one can 'sniff' the data and read it as it
transits the public network of the internet. Furthermore, as
with browser-based applications, once any response is
received by the WebSmart application, you can encrypt it
using AES encryption, as described earlier, to store it on the
server in an undecipherable form.

Note that SOA applications are platform-agnostic, meaning
that as long as you have two web servers that fully support
HTTP and HTTPS, it doesn't matter what the hardware,
operating system or web server software (eg Apache, IIS) is.

SOA applications such as web services

For information about PHP on i, visit www.proximity.co.uk/ resources/php-on-i

Useful links and information about PHP on i

Zend is the leading provider of enterprise-grade applications for PHP. The PHP engine for IBM i, Zend
Server, will run natively on your IBM i and is available as a simple and free download to all IBM i users.

BCD Software has been supporting PHP on IBM i since it first launched a specialised PHP version of
WebSmart in 2007. Proximity is the exclusive UK and Ireland Partner for BCD Software.

PHP is the world?s most popular programming language for web and mobile applications.

Security issues on the IBM i for web applications are
comprehensively addressed by the following combination of
technologies:

- SSL HTTP transport mechanism between client and server
(where the 'client' is a browser)

- SSL HTTP transport mechanism for SOA applications
implemented as web services

- Firewalls and routers
- IBM i-centric web server software: Original HTTP server or

IBM HTTP server powered by Apache
- WebSmart 128-bit AES encryption algorithms (included in

WebSmart)
- OS/400 object-level security

Conclusion

By using each of these technologies in the appropriate
manner, as outlined in this document, you can develop and
deploy IBM i-centric database web applications that are
extremely secure, safe and reliable. These can be either
browser-based applications or SOA applications.

Guide reproduced with kind permission of BCD Software, who
provide easy-to-use, affordable web application development and
modernisation solutions that improve developer and end user
productivity.

Follow the link to find out more about WebSmart, the rapid
development tool for creating PHP or RPG desktop and mobile
applications.

http://www.zend.com/en/solutions/modernize-ibm-i
http://bcdsoftware.co.uk/
http://bcdsoftware.co.uk/
http://php.net/
http://php.net/
http://www.bcdsoftware.com/
http://www.bcdsoftware.com/
http://www.bcdsoftware.com/iseries400solutions/websmart/
http://www.bcdsoftware.com/iseries400solutions/websmart/
http://www.bcdsoftware.com/iseries400solutions/websmart/
http://www.bcdsoftware.com/iseries400solutions/websmart/
http://www.bcdsoftware.com/iseries400solutions/websmart/
http://www.bcdsoftware.com/iseries400solutions/websmart/
http://www.bcdsoftware.com/iseries400solutions/websmart/
http://www.bcdsoftware.com/iseries400solutions/websmart/
http://www.bcdsoftware.com/iseries400solutions/websmart/
http://www.bcdsoftware.com/iseries400solutions/websmart/
http://www.bcdsoftware.com/iseries400solutions/websmart/
http://www.bcdsoftware.com/iseries400solutions/websmart/
http://www.bcdsoftware.com/iseries400solutions/websmart/
http://www.bcdsoftware.com/iseries400solutions/websmart/

Partnering with some of the world?s foremost software
companies, Proximity develops, delivers, maintains and
supports high performance solutions and applications
for leading global companies in the logistics,
manufacturing, retail and finance sectors.

Part of the PHP on IBM i series
For information about PHP on i, visit www.proximity.co.uk/ resources/php-on-i

Proximity Group
t: +44 (0) 113 393 3360

e: info@proximity.co.uk

Leeds office

4-6 Kerry Hill, Horsforth,

Leeds, LS18 4AY

Nottingham office

Pure Offices, Lakeview Drive,

Nottingham, NG15 0DT

