
IBM Systems

Converting CA 2E (Synon) Code to Java on IBM i

Power Systems

A look at one of the leading code modernization solutions



2

Abstract
This white paper briefly describes the advantages of 
modernizing CA 2E (Synon) on IBM i. It includes IBM’s 
evaluation of the maintainability of Java code converted 
from RPG by Fresche’s X-2E Modernize solution. The X-2E 
Modernize solution converts and generates native, object-
oriented Java code in an MVC Design pattern with RESTful 
interaction. CA 2E is ideally suited for conversion to Java as it 
contains a highly useful design model. The white paper also 
includes an overview of Fresche’s conversion process and an 
architecture diagram for the converted code. 

Modernizing CA 2E code
One of the best ways to take advantage of modern computing 
opportunities is to modernize code. Since its introduction, CA 
2E (Synon) has been one of the most successful 4GL tools on 
IBM i. The CA 2E development environment combines a rich 
and precise model of designs and specifications with powerful 
code generation capabilities. Even with this powerful set of 
features, many companies now face real pressure to modernize 
their business applications beyond the scope and capability 
of what CA 2E can offer. The challenge is to move forward 
without discarding decades of investment in design, evolution 
and fine-tuning stored in the CA 2E model. Converting CA 2E 
applications to Java is one method of modernizing valuable 
code to take advantage of new opportunities. IBM Systems Lab 
Services recently evaluated the quality and maintainability of 
Java code generated from CA 2E by Fresche’s X-2E Modernize 
solution, which combines tools and services to significantly 
automate the process of converting code to Java. X-2E 
Modernize automatically refactors and generates an MVC 
web application using object-oriented methods in Java. The 
solution takes advantage of CA 2E application architecture to 
automatically convert applications. Since CA 2E forces users to 
organize code into screen designs, action diagrams, business 
logic and database components, X-2E Modernize uses this 
internal 2E model to extract design information in a structure 
that maps cleanly into a modern MVC/OO/RESTful architecture.

IBM evaluation of Java code converted from 
CA 2E by Fresche
IBM Systems Lab Services was tasked with evaluating the 
maintainability of the Fresche Java code created by the X-2E 
Modernize solution. This evaluation took place from May 11 
to June 6, 2016. While the main focus of this evaluation was 
the maintainability of the back-end Java services, the client 
technologies were also reviewed to get a perspective of the 
entire application. The IBM i customer perspective was kept in 
mind throughout the evaluation, as this is the target customer for 
X-2E Modernize.

Evaluation area
 
Methodology and summary of findings
The evaluation of the Java code for maintainability centered 
around four main criteria, taken from https://quandarypeak.
com/2015/02/measuring-software-maintainability.

• Is the code understandable?
• Is the code modifiable?
• Does the code meet requirements?
• Is there a test harness?

The following tables summarize what is required to satisfy each 
criterion and what was found in the provided code.

https://quandarypeak.com/2015/02/measuring-software-maintainability
https://quandarypeak.com/2015/02/measuring-software-maintainability


3

Summary of Findings
Was the converted code understandable?

Criteria Findings in converted code

• Is the code easily readable? 
• Is it self-descriptive? 
• Is it documented where needed?

• Do the classes serve one and only 
one purpose?

• Are the sizes of the methods 
manageable?

• Do the frameworks used encumber 
the understandability of the code?

• The overall quality of the generated code is good. Both the REST services 
and the JPA implementation are very similar to how a Java developer 
would have coded them.

• The classes served one purpose.
• Method size was manageable.
• Developers will need to be familiar with Spring and angular.js
• Documentation did not appear to generate/install properly in all cases

Was the converted code modifiable?

Criteria Findings in converted code

• Is the code easy to follow?
• Does the code avoid duplication?
• Are the packages generally cohesive?
• Are the inheritance hierarchies not 

overly deep?
• Does the code favor composition 

over inheritance where applicable?

• A skilled Java programmer with knowledge of the Spring components 
used will be able to support, maintain, re-factor and enhance the 
generated application.

• The repeatable pattern created by the tool should  make problems easier 
to fix, and allow for the application to be enhanced rather quickly by 
duplicating the pattern.

• The packages built have a consistent pattern that is easily reproducible 
and understandable.

• Rational® Analyzer metrics suggest the application in general is loosely 
coupled, so this should make re-factoring the code easier. The size of the 
methods is also a key contributor to maintainability.

• Logging was mostly used for warnings; level should be adjusted.  
• Knowledge of Spring REST Controllers, Spring Authentication 

Mechanism and Spring JPA are essential;
• Knowledge of angular.js framework is also essential.

Does the converted code meet requirements?

Criteria Findings in converted code

• Does the code meet requirements? • The general overall architecture provided by Fresche follows the 
specifications in the Fresche Java Reference Architecture document. 
Specifically, the generated application maintains the look and feel of the 
existing application, but it uses modern technologies. This has been well 
executed by the transformation tool.

• The Fresche Java Reference Architecture document itself could be 
improved with more technical detail.

• The Java architecture generated by Fresche’s transformation tool is a 
viable and modern architecture.

Testing

Criteria Findings in converted code

• Is there a test harness?
• Are there runtime logging 

capabilities?

• There was no test harness as part of the original application, so no 
harness was brought forward in the conversion. 

• IBM recommends that logging levels in the transformed Java code be 
adjusted. Currently, logging appears to be used only for warnings.

Tools used to assist in the evaluation
1. PMD tool to check for Java Code problems
2. Rational Software Analyzer Edition 7.1. This provided some Java Metrics on cohesion, coupling, and code complexity.
Evaluator skill set
1. Evaluator has worked on several web applications through the years, which used the following technologies: Struts, JSF, JPA, JDBC, HTML, CSS.
2. Used Spring for JMS implementation on one project. Used the applicationContext.xml file for configuration.

3. The two previous web application projects used JQuery, JQuery-Mobile, Dojo, JavaScript, HTML, CSS, Java REST services and JDBC.



4

Fresche evaluation sheet from  
IBM Systems Lab Services

Quality of the generated code
How close is this code to resembling something that might 
have been hand rewritten by a person? 
The overall quality of the generated code is good. Both the Rest 
services and the JPA implementation are very similar to how 
we would have coded them. The PMD logs sometimes contain 
the same warnings, which should be examined. The few we see 
where additional examination may be of some benefit are:

• “Local variable could be declared final”
• “Parameter is not assigned and could be declared final”
• “Uses StringBuffer instead of +=”
• “Potential Violation of the Law of Dementer” – This may  
    indicate tight coupling which tends to be less
    maintainable.
• “High amount of different objects as members denotes a 
   high coupling” (eight instances)

What do you like about the generated code?
The packages built have a consistent pattern that is easily 
reproducible and understandable. The classes served one 
purpose. JPA entities and JPA Repository objects were 
packaged together, and Spring Controllers are packaged in 
hierarchical package names. This makes it easy to associate the 
REST services with the JPA services.

Typically, when we used JPA, the JPA objects were built in a 
JPA project and wizards were used to build the Java code. The 
separation of the JPA objects in separate packages serves this 
purpose.

Since this is being built by the transformation tool and Spring 
JPA annotations are being used, this package structure makes 
more sense. This is one of the reasons for the low lack of 
cohesion numbers generated by the Rational Software Analyzer. 
The only relatively high numbers appear to be caused by the JPA 
entity objects, which is a result of using JPA.

Another indicator of easily maintained code is method size. For 
this project, the method size was manageable.

Maintainability/Style of the generated code
Using modern, standard tools, how easy would it be for 
a skilled Java developer, with some source application 
knowledge, to take this application on and support, maintain, 
refactor and enhance it? 
A skilled Java programmer with knowledge of the Spring 
components used should be able to support, maintain, refactor 
and enhance the generated application. Knowledge of Spring 
Rest Controllers, Spring Authentication Mechanism and Spring 
JPA are essential. Understanding the Spring Java configuration 
and Spring configuration annotations (instead of the using the 
application-context.xml configuration file) is also required.

Even a skilled Java programmer without Spring skills should 
have no problem maintaining this code after some preliminary 
ramp up time to understand the Spring interfaces that are 
prevalent throughout the code. What about this code contributes 
to its ease of maintainability? There is a repeatable pattern and 
consistent output that is created by the tool. This should make 
problems easier to fix, which should allow for the application to 
be enhanced rather quickly by duplicating the pattern.

The Rational Analyzer metrics suggest the application in general 
is loosely coupled, so this should make refactoring the code 
easier. The size of the methods is also a key contributor to 
maintainability.

 



5

Architecture of the transformed application
Keeping in mind that we’re coming from an IBM i platform, 
how viable and modern do you consider the new architecture 
to be? 
The general overall architecture follows the specifications in the 
Fresche Java Reference Architecture document. Specifically, 
the generated application maintains the look and feel of the 
existing application, but it uses modern technologies. This has 
been well executed by the transformation tool. In Fresche’s case, 
customers want to keep the same look and feel as the green 
screen application, so the Fresche modernization strategy is 
entirely appropriate.

On our modernization projects and in our workshops, we find 
that our customers modernize because they want more real 
estate on each screen or have a responsive UI that can work 
on a mobile device. It is understood that the transformation tool 
does not have the capability to accomplish this task. Changing 
the UI would be handled as a follow-on service by an integration 
team. The architecture does make these changes easier to 
achieve.

The Java architecture generated by Fresche’s transformation 
tool is a viable and modern architecture. A common architecture 
we have seen/used recently is one that employs single-page 
frameworks as client technology, web services as middleware 
and JDBC for the persistence model access. We have had 
several customers use angular.js for their client-side UI 
technology. As for web services, it appears the industry is 
moving toward REST services, and JPA is a viable and well-used 
persistence model access mechanism.

Quality of the generated interface
Would you use such a solution and/or recommend it to others 
to use? 
This is a SYNON-specific solution. We typically do not do a lot of 
work with SYNON customers. That said, we would recommend 
this solution for customers who have an edict to move solely to 
Java and who want to keep the same look and feel as the green 
screen application. Even for those who don’t want the same 
look and feel, we would recommend this solution as one of the 
options to shorten the development cycle by building the Rest 
and JPA services for the SYNON model. 

With regard to the Fresche Java Reference 
Architecture_23102015- MP1.docx:

The application architecture document could be improved for 
IBM i customers. A discussion about the Java pattern (including 
package naming conventions) would be beneficial from an 
education perspective. We also suggest adding a bit more 
technical information about the Spring components used. In 
addition to the short explanation on Spring authentication, 
maybe include a how-to on conversion using LDAP or other 
mechanisms. It may be beneficial to also include information 
about the Spring Java configuration and how some of the 
annotations are used. Finally, it would be helpful to include some 
discussion about how the CRUD JPA services are enabled. 
Specifically, mention JpaRepository, and how the underlying 
implementation is SimpleJpaRepository. Note that this will be 
more for the IBM i customer who is new to Spring and not the 
Spring expert, but it may be best to target the least common 
knowledge base. An additional note: there is a statement that 
JPA is more efficient than creating the SQL manually. You may 
want to clarify this statement. 

General comments/summary 
In evaluating the Java code transformed from Synon by 
X-Modernize, the code in general is maintainable. The patterns 
that have been created should be easily duplicated by most 
Java programmers. Unless the developers are extremely 
knowledgeable with the frameworks used (mainly Spring 
and angular.js), there will be a bit of a learning curve to get 
comfortable with enhancing and maintaining the code.



6

Fresche’s conversion process
This section briefly describes Fresche’s automated approach 
for conversion of CA 2E to Java.

Target reference architecture
A common objective of modernization projects is the 
implementation of a modern architecture. The most widely 
accepted design principles utilize the concepts of multi-
tiered components, developed as objects, in a model-
view-controller (MVC) pattern. This architecture helps 
achieve higher-level goals of scalability, modularity and 
maintainability and supports the use of agile development.

Fresche’s modernization approach transforms CA 2E 
to a highly scalable, industry best practice, Java Linux 
reference architecture using automation through the X-2E 
Modernize toolset. The screens are transformed from 
DSPF to AngularJS, the latest web UI technology for Java 
applications. The application security and access control 
framework is also reproduced.

The business logic is transformed into business logic 
services, which can easily be enabled as callable services, 
if required. Fresche’s database transformation tools can 
be used to migrate the database to a new, more modern 
database target, and the X-2E Modernize Suite can generate 
the Java necessary to run the application against the newly 
transformed database.

The modernized application is transformed into an n-tier 
architecture, broken into three distinct layers: presentation, 
business and data access. This leverages a proper MVC 
architecture.

The following are the characteristics of the code once it is 
transformed into Java:

MVC design pattern – Model-View-Controller, as in a model 
layer of components that contains business logic, a view 
layer that contains the outward presentation and a controller 
layer that handles events in the other layers and directs 
process flow.

Object orientation – Organization of code into objects 
(classes), with those classes containing functions. The 
functions are either callable from other classes or protected 
so they can only be called from within their own class.

RESTful interaction – Server components have no inherent 
knowledge of session state (stateless). Session information that 
needs to be preserved between workflow activities (screens) is 
preserved and represented from client-side memory or through 
session management functions within the application server 
software.

The following diagram depicts the Java reference architecture 
into which the application will be transformed.



7

From loosely structured to modern 
architecture
To get a high-quality result, legacy program modernization 
cannot be accomplished by simply converting from one 
language syntax to another. The modernization of the application 
is done using tools to automate the conversion of existing 
data and program objects into a fully relational database and 
Java objects. The conversion effort includes the tuning of the 
tool to maximize its automation effectiveness in converting 
the programming patterns and practices that were used by 
the original authors of the application. This tool automation 
optimization phase is an iterative process where the code is 
repeatedly run through the converter and the output is verified 
for pattern-based optimization opportunities.

Conversion steps
Briefly, there are four main steps in the conversion process: 

1. Understand and extract the legacy artifacts using X-2E 
Analysis 
X-2E Analysis, a commercially available analysis tool for the 
IBM i, is a key component of Fresche’s modernization process. 
X-2E Analysis provides analysts, developers, architects 
and operations teams with detailed analysis and interactive 
diagrammatic constructs that enable rich understanding of 
existing applications. X-2E Analysis extracts the details of the 
existing CA 2E model, providing an excellent base for efficient 
and effective design recovery, system documentation and 
analysis, and forward-engineering. This extraction phase is 
the first major step in the modernization process. The legacy 
application artifacts are housed in a repository that is later 
queried by X-2E Modernize to reconstruct the new application 
into the target architecture. This step can save as much as 30 
percent from a traditional rewrite project, not to mention the 
benefits on quality that an automated process will bring. 

2. Transform and migrate the database
Fresche’s database modernization solution is highly configurable 
and handles the unique problems presented by IBM i DDS and 
DDL databases. The solution provides data integrity validation 
information that provides an audit of the data migration, proving 
all data was moved. The solution is built on the X-2E Analysis 
product platform and leverages the data model produced 
by X-2E Analysis in its generation capabilities. The solution 
supports multiple target databases and is aware of unsupported 
features that impact the migration and can validate reserved 
words and recommend alternatives. The solution can launch 
and manage multiple parallel (peer-to-peer) database migrations 
simultaneously.

3. Transform into the Knowledge Discovery Metamodel (KDM)
The goal of the Knowledge Discovery Metamodel is to ensure 
interoperability between tools for maintenance, evolution, 
assessment and modernization. KDM is defined as a metamodel 
that can also be viewed as an ontology for describing the 
key aspects of knowledge related to the various facets of an 
enterprise application.
While other tools claim to generate modern, maintainable 
code, this cannot be achieved using a simple line-by-line 
parser to code converter. The KDM is used in order to house 
and represent the future modernized application in a format 
that facilitates its generation into a properly structured MVC 
architecture, thus abstracting it away from its original legacy 
state.

4. Generate the code using X-2E Modernize
When the KDM representation of the system has reached the 
desired state, the target application source code is generated 
from it. The cycle from KDM to code generation is repeated 
during the early stages of the modernization project. This is 
called the “tool tuning” stage and can take several months to 
achieve optimal benefits. The resulting generated source code 
(for example, Java) will then likely need to be manually tweaked 
and perfected by the Fresche modernization specialists.

It should be noted that details of the target platform (Java, 
.NET, PHP and so forth) have been abstracted away so that 
the component that reads from the KDM can be reused 
for other targets. Also, the source of this architecture is the 
structured, normalized X-2E Modernize repository. The 
significance of this is that the generator tool can be customized 
as necessary by Fresche to accommodate different standards, 
frameworks or functional needs. There is a cost associated 
with this customization, but it does provide for a flexible end 
result that much more closely meets a customer’s optimum 
target reference architecture, without the need to change 
any of the extraction tools or data. Any functional application 
enhancements needed by the client would be planned and 
typically prioritized so as to minimize risk, disruption and overall 
effort and cost.



8

For more information
To learn more about IBM i and the supported IBM server 
platforms, please contact your IBM marketing representative or 
IBM Business Partner (BP) or visit the following websites: 

ibm.com/systems/power/ 
or 
ibm.com/power/i/

To learn more about Fresche and X-2E Modernize: 
freschesolutions.com

 

© Copyright IBM Corporation 2017

IBM Corporation 
Route 100 
Somers, NY 10589 
 
Produced in the United States of America 
May 2017

IBM, the IBM logo, ibm.com, Power Systems, and Rational are trademarks of 
International Business Machines Corp., registered in many jurisdictions 
worldwide. Other product and service names might be trademarks of IBM 
or other companies. A current list of IBM trademarks is available on the web 
at “Copyright and trademark information” at www.ibm.com/legal/
copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other 
countries, or both.

Other company, product and service names may be trademarks, or service 

marks of others.

This document is current as of the initial date of publication and may be 
changed by IBM at any time.

Not all offerings are available in every country in which IBM operates.

This publication is for general guidance only.
Information is subject to change without notice. Please contact your local 
IBM sales office or reseller for latest information on IBM products and 
services.

This publication contains non-IBM Internet addresses. IBM is not 
responsible for information found at these Web sites.

IBM does not provide legal, accounting or audit advice or represent 
or warrant that its products or services ensure compliance with laws. 
Clients are responsible for compliance with applicable securities laws and 
regulations, including national laws and regulations.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS” 
WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING 
WITHOUT ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR 
A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF 
NON-INFRINGEMENT. IBM products are warranted according to the terms 
and conditions of the agreements under which they are provided.

Please Recycle

QLW12351USEN-00

http://ibm.com/systems/power/ 
http://ibm.com/power/i/
http://freschesolutions.com

