
© REMAIN SOFTWARE, 2014

WHAT SHOULD ALL SMALL

DEVELOPMENT TEAMS KNOW ABOUT

SOFTWARE CHANGE MANAGEMENT?

JUSTIFYING SOFTWARE CHANGE MANAGEMENT (SCM) SOLUTIONS FOR

SMALL TO MEDIUM-SIZED DEVELOPMENT TEAMS

Development teams in small to medium-sized businesses

(SMBs)—and small independent teams in larger

organizations—often forgo SCM tools for cost reasons.

However, tools designed for SMBs can be affordable and

deliver a significant return on investment.

WHITEPAPER

SOFTWARE CHANGE MANAGEMENT FOR SMALL TEAMS

© REMAIN SOFTWARE, 2014 2

WHITE PAPER

 Executive Summary

Business, regulatory and technology change is

inevitable and relentless. As businesses

introduce new products, services and processes,

applications may need to be modified to

accommodate those changes. Likewise, code

and configuration changes might be required to

take advantage of new, more efficient

technologies. And when governments introduce

new regulations the IT department may have to

modify the company’s software to comply with

them.

Accommodating these changes typically requires

software modifications and/or development.

Determining what new code has to be written or

what existing code has to be changed is only part

of the challenge. Because application modules

are interrelated and depend on a variety of

components, it’s also essential to understand the

relationship between the changed code and

other components. That is true whether you’re

maintaining custom-developed software or

upgrading a third-party application.

A Software Change Management

(SCM) tool can automate the

application asset discovery and

documentation process, including

the documentation of dependencies,

thereby making the entire

application lifecycle more efficient,

while also improving the accuracy of

software maintenance.

Nevertheless, a high entry cost can

be a deterrent to buying an SCM tool

in small and medium-sized

businesses. Yet small organizations

face much of the same application

complexity and risk as large

enterprises—and, in some ways,

more. Thus, they can derive at least

proportional value from SCM tools.

This white paper examines these issues and

presents an SCM solution designed for small to

medium-sized development teams.

Small organizations face much of the

same application complexity and risk

as large enterprises—and, in some

ways, more. Thus, they can derive at

least proportional value from SCM

tools.

SOFTWARE CHANGE MANAGEMENT FOR SMALL TEAMS

© REMAIN SOFTWARE, 2014 3

WHITE PAPER

 Application Lifecycle Issues

and Risks

Most of your IT budget is likely not spent on

new development. According to Forrester

Research
1
, only 34 percent of the typical IT

budget goes to new development.

Fully 66 percent is spent on operations and

maintenance. Consequently, improving

productivity and accuracy in the maintenance

phases of the application lifecycle can generate

considerable value. As will be discussed in a later

section, this is true even if you use third -party

software.

Part of the problem is that, in business, standing

still is falling behind because the rest of the

world moves ever forward. A company that

persists with outdated processes, products and

technologies will quickly find itself at a

significant competitive disadvantage and may

not be in compliance with new and modified

regulations.

Unlike in the early days of computing, modern

applications are generally not large, monolithic

programs with only internal subroutines. In

aggregate, modern applications may be

enormous—typically with many more lines of

code than their early predecessors—but today

they are usually composed of myriad application

objects.

When an organization wants to alter a business

process or add a new one, finding the affected

objects can be difficult, particularly if the code is

not well documented and the original developers

are not available.

But that’s only part of the challenge. Those

modules interact in ways that may not be

obvious. Consequently, a perfectly coded

1
 Application Modernization and Migration Trends in
2009/2010, Forrester Consulting, November 2, 2009

modification of one object may cause another

object to fail unexpectedly.

In addition to being componentized, modern

applications are typically multi -tiered, with at

least database, application and user-interface

layers. If changes are not coordinated across all

tiers, the application may crash.

This complexity often stymies efforts to give

applications a contemporary look and feel that

users are familiar with from their use of other

business and personal software and that meets

modern standards for application design. The

problem is that developers have to spend so

much time unraveling the application

components and interactions when fixing bugs

and addressing critical changes that they don’t

have any time or resources left over for

application modernization.

IT Budgets

Operat ions and Maintenance New development

Source: Forrester research

Improving productivity and accuracy in

the maintenance phases of the

application lifecycle can generate

considerable value.

SOFTWARE CHANGE MANAGEMENT FOR SMALL TEAMS

© REMAIN SOFTWARE, 2014 4

WHITE PAPER

 Packaged Problems

Some companies fill most of their application

portfolio with purchased software. They may

believe that, because they didn’t develop

their applications they don’t need SCM tools.

After all, the thinking goes, the vendor is

responsible for maintenance and upgrades,

not us. That is true up to a point, but only up

to a point.

The problem is that your organization likely

depends on components external to the

software package. For example, a special

query that is critical to operations may have

been written long ago and forgotten by the IT

department, but not by the users who utterly

depend on it. Or Excel spreadsheets might be

populated automatically by data maintained by

the application. If an upgrade changes the

application’s database structure, those queries

and Excel spreadsheets may stop working.

In addition, the application might interact with

modules from other vendors or with the few

custom-developed modules that your

organization has written. To ensure that all of

the software your organization relies on will

continue to work after an upgrade you need

thorough visibility into those interactions.

Software and database interactions are only a

few of the issues that can cause grief when

upgrading packaged software. The application

may also have hardware and other resource

dependencies that are mostly invisible during

day-to-day operations. A change to the

application may make it necessary to reconfigure

those resources. Likewise, changing the

technology may require new versions of your

application packages.

By automating the inventory of all application

assets and the interactions between them, an

effective SCM tool can help you to avoid these

challenges.

 Small as a Special Case

When presented with the case for SCM tools,

small to medium-sized companies—and small,

independent teams in large enterprises—may

say, “that doesn’t apply to us; we’re too small.”

They argue that because their team consists of

just one or two developers, or at most only a

few, communication issues inherent in large

teams aren’t a problem for them. Besides, they

might argue, “because we have complete

responsibility for the whole application portfolio,

we know it inside and out.”

The potential challenges with that perspective

are at least two-fold.

First, applications in small organizations are

often as complex as applications in large

enterprises. It’s impossible for anyone to

remember all of the details of all of the

components and resources and, more

importantly, the relationships and dependencies

within and among those applications,

components and resources. Yet, if one of those

items is inadvertently ignored then, at best, the

software change process may take longer than

expected due to the need to track down

Software and database interactions

are only a few of the issues that can

cause grief when upgrading packaged

software. The application may also

have hardware and other resource

dependencies that are mostly invisible

during day-to-day operations.

SOFTWARE CHANGE MANAGEMENT FOR SMALL TEAMS

© REMAIN SOFTWARE, 2014 5

WHITE PAPER

problems. Worse, the application may fail in

production.

Second, some issues that are potentially very

grave for small teams may be only minor

irritants for larger organizations. A large

enterprise might have an IT staff numbering

in the hundreds or even thousands. Several

people may share responsibility for each

application. If one person isn’t available,

someone else probably has the same knowledge

of the application as that missing person and

may be able to fill in without missing a beat.

That’s not true in small IT shops. Only one or two

people may manage and maintain an application,

or possibly the entire application portfolio.

Often, they are so intimately familiar with the

application(s) that documentation on the original

code, changes applied over the years, module

and resource dependencies and configuration

settings is considered to be unnecessary. After

all, that information is stored in that person’s

head, available whenever it is needed. At least,

so the thinking goes.

However, that’s not always true in the real

world. If a key person quits, takes a vacation, is

incapacitated or worse, that information leaves

with the person. Unearthing all of the

application code, data tables and fields,

interactions and dependencies affected by a

change then becomes a Herculean task.

These challenges are amplified when a small

team is augmented by part-time developers or,

in the extreme, when there is no team at all and

all of the work is performed by consultants who

are contracted on only an as needed basis.

These contracted developers may have may

have little or no experience with the

organization’s applications to draw on. Thus,

unless adequate documentation and software

change management tools are available, they

may have to build that knowledge from scratch

before they can begin to work on an

application.

Neither of these issues comes as a surprise to

small and medium-sized organizations, but there

is often still considerable resistance to adopting

SCM tools. The reason is that there is another

difference between them and their larger

counterparts: the size of their budgets.

Managers often recognize the problems, but

they feel that their budgets don’t allow them to

afford the solution.

However, an SCM tool designed specifically for

small to medium-sized organizations, with a

pricing model that suits their budgets, can

deliver a significant return on investment.

 SCM Solutions for Small Teams

A comprehensive SCM tool identifies all

application objects and artifacts—and the

relationships between them—and catalogs that

information in a database. This gives developers

ready insight into what will be affected by a

proposed change.

Software Change Management - Impact analysis

SCM tool designed specifically for

small to medium-sized organizations,

with a pricing model that suits their

budgets, can deliver a significant

return on investment.

SOFTWARE CHANGE MANAGEMENT FOR SMALL TEAMS

© REMAIN SOFTWARE, 2014 6

WHITE PAPER

An SCM tool also archives all changed code,

allowing developers to compare the current code

to previous versions to determine when a bug

crept in. Developers can also use this archive to

revert to a previous version if necessary.

Automated documentation is another benefit of

SCM tools. All objects, relationships and changes

to them are automatically cataloged. This

information no longer resides solely in people’s

heads, nor is it scattered in electronic versions

of scraps of paper—spreadsheets and

unconnected documents. Instead, it’s in a

central repository that can be accessed rapidly

and methodically.

In some cases, these capabilities are more than

just best practices. They are legal

requirements. As regulations tighten around

the world, particularly in industries such as

the financial sector, all IT components,

including the changes made to them, must be

comprehensively documented and readily

auditable. Information stored in people’s

heads or haphazardly documented in

unconnected files may not be sufficient for

regulatory compliance.

The use of SCM tools also helps to make the

change process more consistent and, most

importantly, accurate. By automating

configuration management, an SCM tool can

ensure that all configuration requirements are

addressed and all relevant components are

installed in the correct order. And the workflow

management facilities of an SCM tool can help to

ensure that change processes consistently

adhere to best practices, no important steps are

inadvertently missed, and no critical issues “fall

through the cracks.”

Software bloat that accumulates over time is as

much a challenge for small shops as it is for large

ones. Users frequently ask for new programs, but

they usually forget to tell IT about programs they

no longer use. As a result, when users ask for a

software change, already overworked IT staff

may spend considerable time updating a related

module that is no longer used. An SCM tool that

catalogs application components and their usage

allows developers to spot obsolete programs.

An SCM solution can also provide significant

value when it comes time to modernize legacy

applications. By providing greater insight into

application assets and their dependencies, an

SCM tool can reduce the complexity of software.

As a result, rather than being stuck in constant

maintenance and bug-fixing mode due to

inefficient and ineffective workflows and

deficient information about application assets,

development teams can carve out time and

space to pursue new development.

The use of SCM tools helps to make

the change process more consistent

and, most importantly, accurate. By

automating configurat ion management,

an SCM tool can ensure that all

configuration requirements are

addressed and all relevant

components are installed in the correct

order.

SOFTWARE CHANGE MANAGEMENT FOR SMALL TEAMS

© REMAIN SOFTWARE, 2014 7

WHITE PAPER

All of the above SCM functionality can provide

significant value to small teams. The difference

between small and large IT teams is not

primarily the scope of their SCM requirements,

but rather the scale. Small teams don’t need to

support complex communications among myriad

people. They also likely support a smaller

application portfolio than large enterprises.

An SCM tool designed for small to medium-size

enterprises recognizes these differences in

scale. It might, for example, contractually or

structurally limit the number of applications

that can be managed with the tool in return for

a lower cost. Or it might support only a limit ed

number of total or simultaneous users, a

limitation that likely will be irrelevant in a small

to medium-sized shop.

Another issue for small organizations is the

upfront cost of the software. Small, recurring

costs might be easily born by a small

organization, particularly if the organization

achieves efficiencies that more than cover the

cost. A large upfront licensing fee, however, can

be a barrier to entry for a small firm.

Consequently an SCM tool that is priced using a

per-seat, subscription model is often a better fit

for a small to medium-sized organization.

An SCM tool designed and priced for small

teams provides SMBs with the advantages that

larger enterprises receive from application

lifecycle solutions, thereby helping to level the

playing field and supporting the nimbleness of

smaller competitors. These advantages include

comprehensive, automated cataloging of

application artifacts and relationships; workflow

management; automated tracking of code

changes; enhanced software versioning;

administration of consistent best practices; and,

overall, greater insight into applications and

object relationships.

BENEFITS OF SCM

SOLUTIONS

Improve visibility into application

assets and the relationships

between them.

Ensure that application

knowledge remains available

when employees leave.

Reduce the possibility of

creating bugs due to unknown

relationships and dependencies.

Make it easier to track down

bugs.

Provide an easy way to revert to

an earlier software version if

necessary.

Enforce consistent maintenance

and development best practices.

Improve and automate

workflows.

Reduce the complexity of

software.

Improve the auditability of

software.

Increase the productivity of the

entire application lifecycle.

SOFTWARE CHANGE MANAGEMENT FOR SMALL TEAMS

© REMAIN SOFTWARE, 2014 8

WHITE PAPER

 About TD/OMS Compact

TD/OMS Compact is a comprehensive SCM tool

designed specifically for small to medium-sized

teams. Sold on a subscription basis, with no up-

front licensing costs, it is affordable for even the

tightest of budgets.

TD/OMS Compact is designed for organizations

developing in RPG, RPG ILE and/or Java who are

looking for simplicity and power in Software

Change Management. This compact solution

delivers all of the functionality you need for

effective Software Change Management, such as

incident, configuration and version management,

including the following:

 Repository that stores all of the software
configuration and change process
definitions,

 Full Graphical User Interface ,

 Work Management to organize and take
control over your work, issues and
changes made to your applications,

 Graphical Impact Analysis , showing all
object relations in a clear, graphical way.

 Pre-defined set-ups make it easy for
small teams to get started quickly.

 About Remain Software

Established in 1992, Remain Software is an agile

independent software vendor that delivers

innovative solutions for the management of the

entire application lifecycle, from defining

requirements through design, development and

up to deployment and testing.

Remain Software’s customer-focused solutions

help organizations to simplify and automate

processes, improve workflows and teamwork,

and streamline IBM i, Windows, UNIX and Linux

software development. Simplified and

standardized Application Lifecycle Management,

time and cost savings, and improved productivity

and communication within teams are just some

of the benefits that help to deliver high quality

applications and customer satisfaction. Taken

together, these features and benefits serve to

increase organizations’ profitability.

Remain Software is supported by an extensive

Partner Network. Together with our Value Added

Resellers, we offer a broad range of services and

training that maximize the benefits of our

solutions.

CONTACT

Remain B.V.

Dukatenburg 82b

3437 AE Nieuwegein

Tel : (+31)30 -6005010

Fax: (+31)30 -6005019

in fo@remainsof tware.com

www.remainsof tware.com

http://remainsoftware.com/partners
http://remainsoftware.com/map-of-partners/all/resellers
http://remainsoftware.com/map-of-partners/all/resellers
mailto:info@remainsoftware.com
http://www.remainsoftware.com/

