
© REMAIN SOFTWARE, 2015

Purchasing off-the-shelf software is frequently the most cost -

effective way to fulf il l business requirements, but packaged

applications must often be customized to meet unique needs.

This presents a challenge when the vendor delivers an

upgrade. When implementing the new version, you need to

ensure that your customizations and the vendor’s revisions

both remain intact and function properly.

 What IT Departments Should Know

about Packaged-Software Change

 Control

Effectively managing changes to customized third-party software

WHITE PAPER

WHAT IT DEPARTMENTS SHOULD KNOW ABOUT PACKAGED-SOFTWARE CHANGE CONTROL

© REMAIN SOFTWARE, 2015 2

WHITE PAPER

 The IT department’s dilemma: Retrofitting upgrades into customized

packaged software

Packaged software offers at least two advantages. For one, by spreading development costs across all

customers, vendors can sell the software at a cost that is lower than what a customer would have to spend to

develop it from scratch, while still generating a profit for the vendor. And, second, customers can offload the

costly and technologically challenging job of fixing bugs, delivering new and enhanced functionality and

adapting to modern technologies and security standards.

As a result of these advantages, packaged software plays an important role in many organizations’ application

portfolios, sometimes comprising the entire portfolio.

Yet, off-the-shelf software also carries at least one serious disadvantage. It is typically delivered in a one-size-

fits-all format that delivers identical functionality to all customers. Consequently, organizations may find that

they have to adapt their business processes to the software, rather than the other way around. And if the

organization has unique, proprietary processes that give it a competitive advantage, the unmodified application

likely won’t support those processes.

In an attempt to achieve the best of both worlds, many organizations customize packaged software to make it

compatible with the organization’s processes and to better align the application with its business objectives.

This customization creates a problem. What happens when the vendor upgrades its application? If a customer

sees sufficient benefit in the upgrade it has to reconcile three different versions of the software: the original

vendor version, the customized production version and the upgraded vendor version. The IT department must

somehow implement the delta changes

between the original and new vendor

versions, without overwriting or

breaking the customizations.

With the aim of providing a quick insight

into the related challenges, pitfalls and

solutions, this white paper describes the

problem, its history and the best

practices for the mass retrofitting of two

systems—the vendor upgrade and the

customized production version—with a

common ancestor.

 3

 2 1

WHAT IT DEPARTMENTS SHOULD KNOW ABOUT PACKAGED-SOFTWARE CHANGE CONTROL

© REMAIN SOFTWARE, 2015 3

WHITE PAPER

 History

ERP application suites have become a mainstay in many organizations using IBM i. ERP brands in this market

include LX (formerly BPCS), MAPICS, JD Edwards, System 21 and PRISM—and those are just the market leaders;

there are others. And, while the ERP is usually the application at the heart of businesses operations, it obviously

does not represent the full breadth of the packaged software market—far from it. Because of its central role in

the business, for the sake of brevity, the remainder of this white paper will refer primarily to ERP software, but

the discussion can be applied equally to all packaged software.

When customers acquire a software license for a comprehensive business application, such as an ERP, they often

also obtain, as part of the contract, authorization to change the source code for internal use. This enables them

to customize the software to best fit their workflows.

As stated in the introduction and as will be expanded in the following section, when organizations customize

software packages they undertake a significant challenge when trying to keep up to date with vendor-issued

upgrades and patches.

 The Challenge

Your ERP diverges from the base code supplied by the

vendor from the moment you implement your first

customization. With each new customization, the code

slowly drifts farther from the version supported by the

supplier.

When the vendor issues a patch or an upgrade to the base

code, if you want to adopt the new version you must

integrate your revisions into the new vendor version or

integrate the vendor’s revisions into your customized

production version. If you fail to do so, you will lose your

customizations.

By definition, the benefits of the customizations were sufficient—or even possibly inescapable business

requirements—for you to make the investment necessary to develop, implement and maintain them. Thus,

forfeiting the customizations is likely not an acceptable option.

Another part of the problem is that the available testing tools are still inadequate, making the integration of

vendor revisions with customized code a risky proposition.

Consequently, applying vendor-supplied upgrades to a customized application can be a major challenge,

providing a strong incentive to follow the old adage, “If it ain’t broke, don’t fix it.” As a result, upgrades may be

put on the shelf. The production code then gets further and further from the vendor’s current version as vendor

revisions keep coming.

Fitted
Customized

Version

BASE (V1)

Customization Equals Divergence

WHAT IT DEPARTMENTS SHOULD KNOW ABOUT PACKAGED-SOFTWARE CHANGE CONTROL

© REMAIN SOFTWARE, 2015 4

WHITE PAPER

This is not to say that customers who customize

packaged applications never install vendor upgrades.

Sometimes, the need to do so is too great to ignore. For

example, just before the turn of the century there was a

large surge of implementations of vendor patches to

deal with the widespread Y2K problem. Judging from the

fact that the world as we know it didn’t implode—as

some of the gloomiest of prognosticators predicted it

would—that mass-patching effort was successful.

Today, more than one and a half decades later, pressure

to upgrade to the vendor’s current version level has built

up to the point where many organizations can no longer

ignore it. This time, the arguments in favor of becoming

current are more varied. They include the benefits of

modernization, the value that can be derived from new

functionality, the need to increase security or meet new

regulations, and the desire to keep the vendor’s

warranty in force, to name but a few.

When the decision is made to implement the vendor’s current version, the effort required to reconcile it with

any customizations applied in-house, along with the risks incurred when doing so, may be colossal. A solid

strategy and effective tools are required to perform the work efficiently and successfully.

Base (V1)

Supplier
(V2)

Supplier
(V3)

...

Customer
version

Divergence increases with each vendor-supplied
revision

WHAT IT DEPARTMENTS SHOULD KNOW ABOUT PACKAGED-SOFTWARE CHANGE CONTROL

© REMAIN SOFTWARE, 2015 5

WHITE PAPER

 Strategy for Retrofitting Upgrades

into a Customized Version

When the pressure to implement a vendor-supplied

upgrade increases to the point where the benefits that

the upgrade offers outweigh the challenges and costs

that the implementation imposes, an effective strategy

for retrofitting the upgrade into your customized source

code includes the following steps:

1. Find the affected source code

2. Compare the sources and merge the

version differences

3. Compile the merged source code

4. Retrofit dependent systems

5. Test

6. Deploy

Find the Affected Source Code

Ideally, you will have the following three versions of the application source code at your disposal:

 Your production version. You will almost always have this version. It is exceptionally rare that an

organization will lose the customized production source and have only the compiled code. If you don’t

have the production source code, it will be virtually impossible to isolate the changes and retrofit the

new version into it.

 The new version. You will almost always have this version as well. The only instance where that would

not be the case is if the vendor rescinded a previous policy of providing source code. Again, without this

version of the source code it will be impossible to perform the necessary retrofitting.

 The original vendor version. This is a nice-to-have, but it’s not necessary for performing the retrofit.

Having this version of the source enables you to perform a three-way compare. Without the original

base version you will have to spend considerably more time finding changes and merging your

customized version with the vendor-supplied upgrade.

Thus, if the original source is no longer available on your system, it is worth the effort required to track it

down. Even a version that is older than the one you customized is better than nothing. If there are no

earlier versions to be found within your organization, try asking the vendor if it can supply a copy.

Technology Options

Source compare-and-merge programs are the

most commonly used solutions to support the

management of multiple application versions. In

this section, we present the output of the

following three source compare-and-merge

programs as possible alternatives in your

strategy to retrofit vendor-supplied changes into

a customized version of an application:

MRGSRC - This program is part of the ADT

(Adapter Development Tool) that runs on the

IBM i.

KDiff3 - This open source program runs on your

PC and is able to do a three-way merge.

TD/OMS Fusion Pro (Source Change Control) -

This Remain Software solution was developed

primarily to overcome the challenge of mass-

retrofitting vendor changes into customized

sources.

WHAT IT DEPARTMENTS SHOULD KNOW ABOUT PACKAGED-SOFTWARE CHANGE CONTROL

© REMAIN SOFTWARE, 2015 6

WHITE PAPER

SCCBASE
(Supplier Original

Version)

SCCSUP
(Supplier Upgrade)

SCCUSER
(Your Changes)

After you have found all of the versions of the source

code, copy all of the objects and sources in each version

into one library per version. For the purpose of this white

paper, we’ve labeled these three libraries as SCCBASE

(the original vendor-supplied base code), SCCSUP (the

vendor-supplied upgrade) and SCCUSER (your current

customized source code).

It is important to be able to test the final merged

application against the original customized version and

the vendor-supplied base version. Thus, you should keep

the SCCBASE, SCCSUP and SCCUSER libraries isolated from

your normal workflow libraries, including your

development, test and production libraries. If you merge

them all into a single library and that prevents you from testing the retrofitted upgrade against the original

versions then you will have to find an alternative strategy for performing the retrofit and testing it.

Compare the Sources and Merge the Differences

To visualize the compare and merge process, consider the following samples of original vendor-supplied code,

user-customized code and vendor-supplied upgrade code. To avoid overburdening this white paper, we’ve kept

the samples very small, but they include all of the major issues that your source-compare tool will have to take

into account.

Vendor-Supplied Base Version (SCCBASE)

Vendor-Supplied Upgrade Version (SCCSUP)

10 FOMAPPL1 IF E K DISK

20 C READ OMAPPL1 99

30 C SETON LR

10 FOUAPPL1 IF E K DISK

20 C READ OUAPPL1 99

30 C EXSR USER

40 C SETON LR

50 *

60

70 C USER BEGSR

80 C 'logoff' DSPLY

90 C ENDSR

WHAT IT DEPARTMENTS SHOULD KNOW ABOUT PACKAGED-SOFTWARE CHANGE CONTROL

© REMAIN SOFTWARE, 2015 7

WHITE PAPER

User-Customized Version (SCCUSER)

In the above example, the user replaced the file that the code reads with her version of the file (line 10 and 20).

This is a major change. The vendor-supplied upgrade still uses the same file as the original vendor version. How

should the merge tool handle this? Should it employ the version of the file specified by the user or does the

upgrade make this unnecessary or, possibly, unworkable?

The user also changed the base file to add a call to a subroutine and added that subroutine to the end of the

source code (lines 30 and 50-80). The vendor did the same thing in the upgraded version, although the two

subroutines are different. In this case, the merge tool must recognize that there are two independent additions to

the files—one in the user-customized version and one in the vendor-supplied upgrade. It might also flag a conflict

on lines 30 and 50-80 and leave it up to the user to decide what to do with it.

Below, we consider how MRGSRC, KDiff3 and TD/OMS Fusion Pro each handle the compare and merge process

for these samples.

MRGSRC

When using MRGSRC to compare and merge the differing versions, the tool reported one conflict, which we will

examine later. As you can see from the resulting source below, there is something not quite right with the

MRGSRC merged code.

From a technical perspective, one can understand why MRGSRC made the choices it did, but the result is

incorrect. In addition, we see that it kept the call to the USER subroutine, but the routine itself disappeared. Could

this be the conflict that MRGSRC reported? As can be seen in the resulting output, there is a report of a conflict,

but the tool does not say what the conflict is. You have to track that down yourself.

One of the advantages of MRGSSRC is that you can run it in interactive mode. Doing so for these sources shows

the following screen.

10 FOUAPPL1 IF E K DISK

20 C READ OUAPPL1 99

30 C EXSR USER

40 C SETON LR

50 *

60

70 C USER BEGSR

80 C 'logoff' DSPLY

90 C ENDSR

WHAT IT DEPARTMENTS SHOULD KNOW ABOUT PACKAGED-SOFTWARE CHANGE CONTROL

© REMAIN SOFTWARE, 2015 8

WHITE PAPER

To resolve the conflict, you can ignore the merge proposal from MRGSRC and copy the two lines below to the

correct location manually.

This is where the conflict appears. Again, we are able to manually copy the changed code to the correct location.

The result after the manual intervention is something that looks correct. However, it is important to note that

conflicts must always be revisited. No merge program, including Remain Software’s, can understand context.

WHAT IT DEPARTMENTS SHOULD KNOW ABOUT PACKAGED-SOFTWARE CHANGE CONTROL

© REMAIN SOFTWARE, 2015 9

WHITE PAPER

KDiff3

When using KDiff3, you must first move the sources to the IFS. After completing the merge, the source must be

copied back to the appropriate library member. This normally results in the loss of the source line change date

and sequence number. However, when using a specialized copy function, these changes can be included in the

compare.

After starting KDiff3, the tool pops up a color-coded three-way compare, rather than a two-way compare. It too

then detects conflicts that must be resolved manually.

KDiff3 makes the resolution process easy. You simply select the conflict and then choose which source to use in

the final product.

Doing so with our sample code versions results in the following source member:

00 FOUAPPL1 IF E K DISK

01 C READ OUAPPL1 99

02 C EXSR SUPSR

03 C ', World!'DSPLY

04 C EXSR USER

05 C SETON LR

06 *

07 C SUPSR BEGSR

08 C 'Hello' DSPLY

09 C ENDSR

10 *

11 C SUPSR BEGSR

12 C 'Hello' DSPLY

13 C ENDSR

WHAT IT DEPARTMENTS SHOULD KNOW ABOUT PACKAGED-SOFTWARE CHANGE CONTROL

© REMAIN SOFTWARE, 2015 10

WHITE PAPER

However, this is still not quite right. As you can see, KDiff3 misses the ENDSR line that should come after line 9.

As depicted below, KDiff3 can also merge a complete directory, but any conflicts must be merged manually.

TD/OMS Fusion Pro

Remain Software’s Source Change Control tool, TD/OMS Fusion Pro, which is part of the TD/OMS Application

Lifecycle Management framework, takes a different approach to the compare and merge process.

The first difference from other tools comes in the speed of the conversion process. One reason for this greater

speed is that TD/OMS Fusion Pro allows you to compare complete libraries in one go.

Another difference is that TD/OMS Fusion Pro divides the process into two steps. In the first step, user changes

are isolated from the base. You can also use this step to isolate the supplier changes from the base. These

comparisons give some idea of the processes that will be required to successfully retrofit the code.

01 FOUAPPL1 IF E K DISK

02 C READ OUAPPL1 99

03 C EXSR USER

04 C EXSR SUPSR

05 C ', World!'DSPLY

06 C SETON LR

07 *

08 C USER BEGSR

09 C 'logoff' DSPLY

10 C SUPSR BEGSR

11 C 'Hello' DSPLY

12 C ENDSR

WHAT IT DEPARTMENTS SHOULD KNOW ABOUT PACKAGED-SOFTWARE CHANGE CONTROL

© REMAIN SOFTWARE, 2015 11

WHITE PAPER

Consider the following two figures, in which TD/OMS Fusion Pro isolated the changes in the user-customized and

vendor-supplied versions. Note the modified line numbers signaling the source differences.

Isolated User Changes

Isolated Vendor Changes

Now that the differences have been made apparent, a proper merge can be performed and the developer can be

advised as to how to proceed.

Annotated Merged Version

First, the tool delivers an annotated merged version. This is source code that can be compiled, but it notes all of

the details of the merge so the developer can see exactly what happened. The developer can then revert or

replace older lines as appropriate.

There is some value to leaving the source annotated beyond this step. If a problem is discovered in test or, worse,

in production, the annotations can help the developer to find the cause of the error more quickly.

The annotated version of the sample merge is provided below:

02DD FOMAPPL1 IF E K DISK

03DD C READ OMAPPL1 99

06II FOUAPPL1 IF E K DISK

07II C READ OUAPPL1 99

08II C EXSR USER

10 C SETON LR

12II *

13II C USER BEGSR

14II C 'logoff' DSPLY

15II C ENDSR

01 FOMAPPL1 IF E K DISK

02 C READ OMAPPL1 99

04II C EXSR SUPSR

06 C SETON LR

08II *

09II C SUPSR BEGSR

10II C 'Hello' DSPLY

11II C ENDSR

WHAT IT DEPARTMENTS SHOULD KNOW ABOUT PACKAGED-SOFTWARE CHANGE CONTROL

© REMAIN SOFTWARE, 2015 12

WHITE PAPER

Cleaned Merged Version

Lastly, you can run a command that cleans-up the annotations, producing the final source, as follows:

01

*********USRFD*INSERT***********************BEGIN***************

02 FOUAPPL1 IF E K DISK

03 C READ OUAPPL1 99

04 C EXSR USER

05

*********USRFD******************************END*****************

06

*********USRFD*DELETE***********************BEGIN***************

07 F*MAPPL1 IF E K DISK

08 C* READ OMAPPL1 99

09

*********USRFD******************************END*****************

10 ***RPA*MESSAGE *** LINES INSERTED, JUST AFTER DELETE BLOCK

11 C EXSR SUPSR

12 C ', World!'DSPLY

13 C SETON LR

14 ***RPA*MESSAGE *** INSERTED LINES JUST AFTER INSERT BLOCK

15

*********USRFD*INSERT***********************BEGIN***************

16 *

16 *

17 C USER BEGSR

18 C 'logoff' DSPLY

19 C ENDSR

20

*********USRFD******************************END******************

WHAT IT DEPARTMENTS SHOULD KNOW ABOUT PACKAGED-SOFTWARE CHANGE CONTROL

© REMAIN SOFTWARE, 2015 13

WHITE PAPER

Compile

The first chance to determine whether the source was merged correctly is after you compile it. This will tell you if

the merge was successful from a technical point of view. In 90 percent of the cases, this technical validation and a

high-level functional validation are performed simultaneously. However, further testing is required to fully

validate the retrofitted application upgrade.

The TD/OMS base product can help to streamline this phase. Its ‘Work with Solution Compile’ function provides

access to compiling options that allow you to create objects in the system without leaving the TD/OMS Solution

Maintenance function. Before execution, default ‘create or compile’ command-sets can be defined for the

creation of different types of objects. These pre-defined commands can be started from the solution maintenance

function or during the fix-transfer process. Once defined, compile commands will be used during the transfer

process as well.

Retrofit Dependent Systems

Programs rarely stand alone. They often interact with other programs to create a complete application. What’s

more, there may also be interfaces between applications. For example, you may have:

 Created satellite applications that replaced a complete block of the supplier code or provided a separate

enhancement unique to your company.

 Added code to your financial application to retrieve data from the ERP system.

 Created a replacement warehouse management application that hooks into ERP files that have now

changed.

 Placed calls in your warehouse management application to ERP programs that now have different

parameter lists.

 And so on.

00 FOUAPPL1 IF E K DISK

01 C READ OUAPPL1 99

02 C EXSR USER

03 C EXSR SUPSR

04 C ', World!'DSPLY

05 C SETON LR

06 *

07 C USER BEGSR

08 C 'logoff' DSPLY

09 C ENDSR

10 *

11 C SUPSR BEGSR

12 C 'Hello' DSPLY

13 C ENDSR

WHAT IT DEPARTMENTS SHOULD KNOW ABOUT PACKAGED-SOFTWARE CHANGE CONTROL

© REMAIN SOFTWARE, 2015 14

WHITE PAPER

Changing the base software may require

changes in these other programs as well. Thus,

after retrofitting the vendor’s changes into

your custom-modified source, you then must

retrofit dependent systems where

appropriate.

The key to solving this problem lies in knowing

how the different components in the system

interact, which files are read by which

programs, which “foreign” logical files are

created over supplier’s physical files, and so

on.

The TD/OMS framework includes an Impact

Analysis module that presents all of this

information to the developer.

Test

Vendors generally deliver thoroughly tested code that is relatively bug-free (or as close as any large, complex

application can come to being bug-free). In addition, your customized production version might not only have

been thoroughly tested, but it may also have had years of production experience behind it. Nevertheless, that

doesn’t negate the need for thorough testing of the retrofitted upgrade.

Because they can’t recognize context or determine business requirements, even the best of compare-and-merge

tools cannot guarantee that the merge was done correctly. What’s more, the interaction of your prior

customizations with the new vendor code might introduce new problems.

As a result, you should test the merged code as thoroughly as you would any application modifications, including

sufficiently testing your full application portfolio to ensure that all dependent programs will still function properly

after the merged code is deployed into production.

The testing phase should encompass the standard variety of tests, including unit, integration and load testing.

An automated testing tool can significantly improve the thoroughness, accuracy and efficiency of the testing

phase, particularly if you’ve already built a test suite designed to put your applications through their paces,

including testing all situations that will occur in production. However, if the vendor’s upgrade adds new functions,

you will have to augment your existing test suite to validate the augmented functionality.

Deploy

Thorough testing is not sufficient to ensure successful deployment to production. In some cases, the order in

which objects and files are transferred to production matters. And, of course, they must all be transferred

accurately. In addition, if the vendor-supplied upgrade modifies any system settings, those new settings must be

accurately reflected in the production environment at the time of deployment.

TD/OMS impact analysis makes dependencies clear

WHAT IT DEPARTMENTS SHOULD KNOW ABOUT PACKAGED-SOFTWARE CHANGE CONTROL

© REMAIN SOFTWARE, 2015 15

WHITE PAPER

A Software Change Management (SCM) tool, such as TD/OMS, can automate application deployment to ensure

that all objects are moved to production in the correct order and all configurations duplicate exactly their

conditions in the development and test environments, i.e. the environments where the retrofitted application

was validated.

Deployment automation can significantly reduce the time and expense required to implement the retrofitted

vendor upgrade. What’s more, it virtually eliminates the possibility of human error during deployment, thereby

helping to prevent system failures that might result from an inaccurate deployment.

 Conclusion

Vendors don’t issue upgrades just for the heck of it. Upgrades may improve performance, add new functionality,

and/or plug security holes.

Depending on the vendor’s implementation tools and processes, even implementing an upgrade as-is can be

time-consuming and cumbersome. However, the complexity, human resource burden and potential for error

increase significantly if, rather than implemented as-is, the upgrade must be retrofitted with customizations that

you applied to an earlier version.

Before organizations will consider implementing an upgrade, the value it delivers must be greater than the cost of

the implementation, including all of the risks it introduces. A Source Change Control tool, such as TD/OMS Fusion

Pro, can automate the process of finding differences between software versions and merging your customizations

with the vendor’s upgraded code. What’s more, automation can reduce the probability of human error. As a

result, the tool can lower the cost and risk of implementation, thereby making it easier to justify implementing

the upgrade and gaining its benefits.

WHAT IT DEPARTMENTS SHOULD KNOW ABOUT PACKAGED-SOFTWARE CHANGE CONTROL

© REMAIN SOFTWARE, 2015 16

WHITE PAPER

 About TD/OMS

TD/OMS is an easy to use, flexible and cost-effective Software Change Management solution that supports IBM i

(AS/400, Power Systems), Windows and Unix/Linux.

The basics of TD/OMS incorporate fundamental IT business processes such as Incident Management,

Configuration Management, Version Management, Release Management, Life Cycle Management and Software

Distribution & Deployment.

TD/OMS helps the IT organization to streamline the change process of any type of application, no matter the

complexity of the environment. It provides complete control over the software life cycle process and delivers a

real-time overview of software components and configuration. Compliance and auditing requirements can be

easily met due to the registration of all component movements.

 About TD/OMS Fusion Pro

TD/OMS Fusion Pro (Source Change Control), a part of the TD/OMS Application Lifecycle Management

framework, is designed to simplify the process and minimize the risks of retrofitting a vendor-supplied application

upgrade into existing application customizations. This significantly reduces the challenges of implementing

upgrades in a customized environment.

TD/OMS Fusion Pro facilitates comparisons of complete libraries of sources, highlighting differences between the

versions. It then provides an annotated merged version of the code that can be compiled as is or modified.

TD/OMS Fusion Pro can also automatically clean up the code by removing the annotations.

The result is a more accurate fusion of the vendor’s latest version of its software and your organization’s pre-

existing customizations.

Call us to get more info about

improving change process in your

organization!

(+31) 30-600-5010

WHAT IT DEPARTMENTS SHOULD KNOW ABOUT PACKAGED-SOFTWARE CHANGE CONTROL

© REMAIN SOFTWARE, 2015 17

WHITE PAPER

 About Remain Software

For more than 20 years Remain Software has been an

expert and a market leader in Application Lifecycle

Management solutions for the IBM i platform. The

innovative and flexible software change and workflow

management solutions from Remain Software help

organizations to manage their IT assets by simplifying

and automating application change and modernization

processes, improve workflows and teamwork, and

streamline IBM i, Windows, Unix und Linux software

development - from defining requirements through

design, development and up to deployment and

testing.

Simplified and standardized Application Lifecycle

Management, time and cost savings, and improved

productivity and communication within teams are just

some of the benefits that help to deliver high quality

applications and customer satisfaction. Taken together,

these features and benefits serve to increase

organizations’ profitability.

Remain Software is supported by an extensive Partner

Network. Together with their Value Added Resellers,

Remain Software offers a broad range of services and

training that maximize the benefits of our solutions.

CONTACT

Remain B.V.

Dukatenburg 82b

3437 AE Nieuwegein

Tel: (+31)30-6005010

Fax: (+31)30-6005019

info@remainsoftware.com

www.remainsoftware.com

Application
life cycle

management

Software Change
Management for

small teams

Workflow
management

Application
modernization

support

Get the latest news about application life cycle

management. Follow us:

http://remainsoftware.com/partners
http://remainsoftware.com/partners
http://remainsoftware.com/map-of-partners/all/resellers
mailto:info@remainsoftware.com
http://www.remainsoftware.com/
https://remainsoftware.com/software-change-management
https://remainsoftware.com/software-change-management
https://remainsoftware.com/software-change-management
https://remainsoftware.com/TDOMS-Compact
https://remainsoftware.com/TDOMS-Compact
https://remainsoftware.com/TDOMS-Compact
https://remainsoftware.com/workflow-management
https://remainsoftware.com/workflow-management
https://remainsoftware.com/application-modernization
https://remainsoftware.com/application-modernization
https://remainsoftware.com/application-modernization
https://remainsoftware.com/software-change-management
https://remainsoftware.com/TDOMS-Compact
https://remainsoftware.com/workflow-management
https://remainsoftware.com/application-modernization
https://www.linkedin.com/company/remain-software
https://twitter.com/remainsoftware
https://www.youtube.com/user/RemainSoftware/about
http://feedburner.google.com/fb/a/mailverify?uri=remainsoftware&loc=en_US

